تأثیر پیش‌تیمار پره‌بیوتیکی بر آسیب‌‌های بافتی در بچه‌ماهیان تیلاپیای نیل (Oreochromis niloticus)‌، مواجهه‌یافته با نانو‌ذرات نقره

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد بوم‌شناسی آبزیان، دانشکده شیلات و محیط ‌زیست، دانشگاه علوم‌کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

2 دانشیار گروه تولید و بهره‌برداری آبزیان، دانشکده شیلات و محیط‌ زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

3 دانشجوی دکتری تخصصی تکثیر و پرورش آبزیان‌، دانشکده شیلات و محیط‌زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 دانشجوی دکترای تخصصی تکثیر و پرورش، دانشکده شیلات و محیط ‌زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

5 دانشجوی دکترای تخصصی محیط ‌زیست، دانشکده محیط ‌زیست، دانشگاه تهران، تهران، ایران.

چکیده

وجودآلاینده‌هاینوظهورنانو­ذراتدرمحیط‌های آبیباعثکاهشعملکردایمنیآبزیانمی‌شود،از این­رواستفادهازمحرک‌هایایمنیبسیارضروریبه نظرمی‌رسد. هدف از انجام مطالعه حاضر، بررسی تأثیر سطوح مختلف پره­بیوتیکی قارچ صدفی (Pleurotus ostreatus) بر آسیب‌های بافتی در کبد و آبشش‌ ماهیان تیلاپیای مواجهه­یافته با نانو­ذرات نقره بود.به این منظور تعداد120قطعه بچه‌ماهیتیلاپیا (Oreochromis niloticus)در 4 گروه آزمایشی با 3 تکرار شاملتیمار 1 به­عنوان شاهد (تغذیه­شده با غذای فاقد پره‌بیوتیک)، تیمار 2 تا 4، تغذیه­شده با غذای حاوی 05/0، 1/0 و 2/0 درصد پره­بیوتیک تقسیم شدند  و بهمدت42روز پرورش داده شدند، سپس به مدت 16 روز نانوذرات نقره باغلظت ppm ­5/0 به محیط پرورش هرکدامازتیمارها افزودهشد. در پایان دوره، ماهیانتوسطمحلول بیهوش­کنندهگل­میخک (220میلی‌گرمبرلیتر)بیهوششده وبافتکبد وآبشش آن‌هابرایمطالعاتبافت‌شناسیجداگردید. تیمارهاییکهدر معرض نانو ذرات نقره بودندعوارض وسیعدر بافت آبشش و نیز جراحات شدید و رکود صفرا در بافت کبد را نشان دادند. ولی استفاده از پره­بیوتیکقارچ صدفیتوانست اثراتتخریبیناشیازنانوذرات نقرهبرعوارض بافتی مذکور راکاهشدهد. نتیجه کلی مطالعه حاضر نشان داد که تیمار 2/0درصد باپره­بیوتیک قارچ صدفی در جیره می‌تواند بهترین تأثیر محافظتی را بر آسیب­های بافتی در کبد و آبشش ماهی تیلاپیای مواجهه­یافته با  نانوذرات نقره را داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of prebiotic pretreatment on histological lesions of Nile tilapia fry (Oreochromis niloticus) exposed to silver nanoparticles

نویسندگان [English]

  • farahnaz kakavand 1
  • Aliakbar Hedayati 2
  • maryam rezaei shadegan 3
  • ali jafar nodeh 4
  • saeed maddah 5
1 Graduate of MSc in Aquatic Ecology, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Ph.D. student in Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
4 PhD of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
5 Ph.D. student in Environment, Faculty of Environmental Sciences, Tehran University, Tehran, Iran.
چکیده [English]

The presence of emerging nanoparticle contaminants in aquatic environments reduces the safety performance of aquatic animals, so the use of safety stimuli is essential. The aim of the present study was to investigate the effect of different prebiotic levels of oyster mushrooms (Pleurotus ostreatus) on tissue damage in the liver and gills of tilapia exposed to silver nanoparticles. For this purpose, 120 juveniles of Tilapia (Oreochromis niloticus) were divided into 4 experimental groups with 3 replicates and bred for 42 days including treatment 1 as control (fed with diet without probiotic) and treatments 2-4, fed with diet containing 0.05%, 0.1% and 0.2% prebiotics, then 5 ppm of silver nanoparticles were added to the culture medium of each treatment for 16 days. At the end of the experimental period, fish were anesthetized with clove anesthetic solution (220 mg/L) and their liver and gill tissues were isolated for histological studies. Treatments exposed to silver nanoparticles showed extensive complications in gill tissue as well as severe injuries and bile stasis in liver tissue. However, the use of mushroom prebiotics was able to reduce the destructive effects of silver nanoparticles on these tissues. Overall, the results indicated that treatment with 0.2% of prebiotics in the diet could have the best protective effect on tissue damage in the liver and gills of tilapia exposed to silver nanoparticles.

کلیدواژه‌ها [English]

  • Pleurotus ostreatus
  • Prebiotic Silver nanoparticles
  • Tilapia
  • Akrami, R., Qelichi, A. and Ahmadi, A. (2014). Prebiotic effect of dietary inulin on hematological parameters ‌ and biochemistry of fish serum Hus (Huso huso) ‌ Young ‌ ‌. Journal of Veterinary Research, University of Tehran, 66(2): 131-136.
  • Alazemi, B.M., Lewis, J.W. and Andrews, E.B. (1996). Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environmental Technology, 17(3): 225-238.
  • Ariaei, M., Hamidian, A.H., Igdari, S., Pourbagher, H. and Ashrafi, S. (2014). Histopathological changes of zebrafish liver (Aphanius sophiae) due to arsenic and cadmium. Journal of Aquatic Ecology, Hormozgan University, 3(4): 40-31. [In Persian]
  • Benn, T., Cavanagh, B., Hristovski, K., Posner, J.D. and Westerhoff, P. (2010). The release of nanosilver from consumer products used in the home. Journal of Environmental Quality, 39(6): 1875-1882.
  • Brusle, J., Gonzalez, I. and Anadon, G. (1996). Fish Morphology, the structure and function of fish Liver, eds Munshi JSD, Dutta HM, Science Publishers INC: New York, pp: 189.
  • Cengiz, E.I. and Unlu, E. (2006). Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish Gambusia affinis, a microscopic study. Environmental Toxicology and Pharmacology, 21(3): 246-253.
  • Chen, J., Dong, X., Xin, Y. and Zhao, M. (2011). Effects of titanium dioxide nano particles on growth and some histological parameters of zebrafish (Danio rerio) after a long maturation and after fertilization in pig oocytes: relevance to the ability of oocytes to form male pronucleus. Biology of Reproduction, 49(1): 89-94.
  • Clark, N.J., David, B., Benjamin, P.E. and Richard, D.H. (2019). Dietary exposure to silver nitrate compared to two forms of silver nanoparticles in rainbow trout: bioaccumulation potential with minimal physiological effects. Environmental Science, 6(5): 1393-1405.
  • Das, S., Das,A. and Gupta,A. (2013) Histopathological changes in liver of Indian flying barb, Esomus danricus, exposed to Malathion. International Journal of Latest Research in Science and Technology, 2(2):62-64.
  • Deka, S. and Mahanta, R. (2012) A Study on the Effect of Organophosphorus Pesticide Malathion on Hepato-Renal and Reproductive Organs of Heteropneustes fossilis (Bloch). The Science Probe, 1(1): 1- 13.
  • Douglas, L.C. and Sanders, M.E. (2008). Probiotics and prebiotics in dietetics practice. Journal of the American Dietetic Association, 108(3): 510-521.
  • Fanta, E., Rios, F.S., Romao, S., Vianna, A.C.C. and Freiberger, S. (2003). Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Journal of Ecotoxicology and Environmental Safety, 54(4): 119-130.
  • Farokhi, F., Jamili, S.H., Shahidi, M., Mashinchian, A. and Vosoghi, G.H. (2016). Investigation of the effect of Malathion insecticide on liver tissue and liver enzymes of Caspian Sea fish (Rutilus rutilus caspicus). Journal of Animal Environment, Fisheries Science Research Institute, 8(3): 259-264.
  • Griffitt, R.J., Luo, J., Gao, J., Bonzongo, J.C. and Barber, D.S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 27(9): 1972-1978.
  • Hedayati, S.A., Darabitabar, F. and Rezaie, H. (2017). Examination of tissue pathology of carp carp and ordinary goldfish (Carassius auratus) in the face of lethal concentrations of zinc nanofibers, copper nanocoxes (CuONPs) and titanium oxide nanoparticles (TiO2NPs). Journal of Veterinary Clinical Pathology, 11(2): 135-144. [In Persian]
  • Hedayati, S.A., Jahanbakhshi, A. and Qaderi, F. Aquatic toxicology. (2013). Gorgan University of Agricultural Sciences and Natural Resources Publications. 212 pages. [In Persian]
  • Iri, A., Kakavand, F., Rezaie shadegan, M. and Hedayati, S.A. (2020). The effect of oyster mushroom extract on histopathological changes in the liver and gills of Nile tilapia in the presence of silver nitrate. Journal of Marine Biology, 12(3):53-64. [In Persian]
  • Kakavand, F., Hedayati, S.A., Jafar, A., Madah, S. and Rezaie Shadegan, M. (2020). The effect of prebiotic pretreatment on hematological characteristics of tilapia (Oreochromis niloticus) exposed to silver nanoparticles. Animal Physiology and Development, Islamic Azad University, Zanjan Branch, 13(3): 1-13. [In Persian]
  • Kalbassi, M.R., Salari, J.H. and Johari, A. (2011). Toxicity of silver nanoparticles in aquatic ecosystems: salinity as the main cause in reducing toxicity. Iranian Journal of Toxicology, 5(12): 436-443.
  • Khodadadi, A., Haghighi, A., Malekinezhad, H., Tokmechi, A. and Afsharnasab, M. (2019).The effect of Salmanax probiotic supplement on gill tissue and liver of rainbow trout in the breeding period and experimental exposure to Yersiniosis disease. Journal of Veterinary Clinical Pathology, 12(4): 337-355. [In Persian]
  • Li, Z., Yang, S., Lin, H., Huang, J., Watkins, P.A., Moser, A.B., et al. (2003). Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology, 11(4): 720-726.
  • Mahious, A.S., Gatesoupe, F.J., Hervi, M., Metailler, R. and Ollevier, F. (2005). Effect of dietary inulin and oligosaccharides as prebiotics for weaning Turbot (Psetta maxima). International Journal of Environmental Science and Technology, 14(7): 219-229.
  • Martoja, R. and Martoja–Pierson, M. (1967). Initiation aux techniques de l'histologie animale. Paris, Masson, pp: 345.
  • Ostaszewska, T., Chojnacki, M., Kamaszewski, M. and Sawosz-Chwalibóg, E. (2016). Histopathological effects of silver and copper nanoparticles on the epidermis, gills, and liver of Siberian sturgeon. Environmental Science and Pollution Research, 23(2): 1621-1633.
  • Pashaei, H., Farokhroz, M., Zamini, A.A., Vahabzadeh, H., Ebrahimian, Y.(2013) .The Affection of Diazinon Insecticide and Butachlor Herbicide on the Vimba vimba persa free larva liver tissue and gill, 27(3):38-42.
  • Pelgrom, S., Lamers, L., Lock, R., Balm, P. and Wendelaar Bonga, S.E. (1995). Integrated physiological response of tilapia (Orechromis mossambicus) to sublethal copper. Aquatic Toxicology, 32(4), 303-320.
  • Pournori, B., Dorafshan, S. and Heyrati, F. P., (2017). Bioaccumulation of water-borne silver nanoparticles and silver nitrate in striped catfish, Pangasianodon hypophthalmus, fed dietary nucleotides. Iranian Journal of Ichthyology, 4(1): 31-40.
  • Rayes, N., Seehofer, D., Theruvuth, T., Schiller, R.A., Langrehr, J.M. and Jonus, S. (2004). Supply of pre- and probiotics reduces bacterial infection rates after liver transplantation-a randomized, double-blind trial. American Journal of Transplantation, 5(4): 125-130.
  • Rishi, P., Kaur Mari, S., Bharrhan, S., Shukla, G. and Rupinder, T. (2009). Protective efficacy of probiotic alone or in conjunction with a prebiotic in Salmonella-induced liver damage. FEMS Microbiology Ecology, 69(9): 222-230.
  • Safahieh, A., Hedayati, A., Savari, A. and Movahedinia, A. (2011). Effect of sublethal dose of mercury toxicity on liver cells and tissue of yellowfin seabream (Acanthopagrus latus). Toxicology and Industrial Health, 28(7): 583-592.
  • Sarkar, B., Chatterjee, A., Adhikari, S. and Ayyappan, S. (2005). Carbofuran and cypermethrin induced histopathological alterations in the liver of Labeo rohita (Hamilton) and its recovery. Journal of Ecotoxicology and Environmental Safety, 21(1): 131-135.
  • Şevik, S., Aktaş, M., Doğan, H. and Koçak, S. (2013). Mushroom drying with solar assisted heat pump system. Energy Conversion and Management, 7 (2): 171-178.
  • Shahzad, K., Khan, M. N., Jabeen, F., Kosour, N., Chaudhry, A. S., Sohail, M. and Ahmad, N.(2019). Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. International journal of environmental science and technology, 16(4): 1973-1984.
  • Shahzad, K., Khan, M.N., Jabeen, F., Kosour, N., Chaudhry, A.S., Sohail, M., et al. (2019). Toxicity of zinc oxide nanoparticles (ZnO-NPs) in tilapia (Oreochromis mossambicus): tissue accumulation, oxidative stress, histopathology and genotoxicity. International Journal of Environmental Science and Technology, 16(4): 1973-1984.
  • Shaluei, F., Hedayati, A., Jahanbakhshi, A. and Baghfalaki, M. (2012). Effects of nanometer-sized silver materials on survival response of Caspian roach (Rutilus rutilus caspicus). Toxicology and Industrial Health, 24(3): 207-211.
  • Shamoshaki, M., Soltani, M., Shrifpour, I., Imanpour, M., Baharloi, A. and Naimi, M. (1992). Investigation of the effect of diazinon toxin-killing concentrations on gonad, brain and heart tissue of Rutilus frisii kutum Kamensky, 1901. Journal of Veterinary Clinical Pathology, 5(3): 1287-1294. [In Persian]
  • Van der Oost, R., Beyer, J. and Vermeulen, N.P.E. (2003). Fish Bioaccumulation and Biomarkers, 13(2): 57-149.
  • Wasser, S.P. (2002). Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 60(3): 258-274.
  • Yadav, M. and Schorey, J.S. (2006). The β-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood, 10(8): 3168-3175.
  • Ziaei, N. (2013). Investigation of the toxic effect of silver nanoparticles on biological and ecological systems. Journal of Agricultural Biotechnology, 6(3): 148-121. [In Persian]