اثرات مکمل‏سازی جیره با سطوح مختلف آرژینین بر جمعیت میکروبی رودۀ کور و خصوصیات آنتی‏اکسیدانی سرم جوجه‏های گوشتی سالم و چالش‏یافته با مخلوط آیمریاهای مختلف

نوع مقاله: علمی پژوهشی

نویسندگان

1 دانشجوی دکترای تخصصی علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

2 استاد گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 استاد گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه تبریز، تبرز، ایران

4 دانشیار گروه پاتوبیولوژی ، دانشکده دامپزشکی، دانشگاه تبریز، تبریز، ایران.

5 دانشجوی کارشناسی ارشد علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.

6 دانشجوی دکترای تخصصی علوم دامی، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران.

چکیده

کوکسیدیوز سالانه باعث زیان‏های اقتصادی در واحدهای پرورش طیور می‏شود و استراتژی‏های تغذیه‏ای می‏تواند آن را تخفیف دهد. این مطالعه به‏منظور بررسی اثرات سطوح مختلف آرژینین بر جمعیت میکروبی روده‏ء کور و خصوصیات آنتی‏اکسیدانی سرم جوجه‏های گوشتی چالش­یافته با آیمریا انجام شد. تیمارهای آزمایشی شامل جوجه‏های سالم و جوجه‏های چالش­یافته تغذیه­شده با جیره‏های مکمل­سازی­شده با مقادیر 85، 100، 125 و 150 درصد آرژینین قابل‏هضم توصیه­شده، بودند. برای کشت باکتریایی،درزمانکشتار (21 و 42 روزگی) ازمحتویاترودهکور تحتشرایطاستریلنمونه‏برداری انجام شد.همچنین سطح فاکتورهای اکسیدانی و آنتی‏اکسیدانی و نیتریک‏اکسید در سرم جوجه‏ها اندازه­گیری شد. روده کور جوجه‏هایی که جیره‏های حاوی سطوح 125 و 150 درصد آرژینین را دریافت کرده بودند، جمعیت اشریشیای کولای پایین‏تر و جمعیت لاکتوباسیل‏‏ها، بیفیدوباکتری‏ها و توتال باکتری‏های بالاتر و همچنین pH بالاتری را نشان دادند (05/0p < /em><)، ولی جمعیت انتروکوکوس‏ها تحت تأثیر سطوح آرژینین و چالش کوکسیدیوز قرار نگرفت (05/0p < /em>>). همچنین چالش با آیمریا، سطح سرمی گلوتاتیون‏ پراکسیداز، سوپر‏اکسید‏ دیسموتاز و ظرفیت تام آنتی‏اکسیدانی را کاهش و سطح سرمی نیتریک ‏اکسید و مالون‏دی‏آلدئید را افزایش داد (05/0p < /em><). البته، افزودن آرژینین تنها در سطوح 125 و 150 درصد توانست سطح گلوتاتیون ‏پراکسیداز را افزایش دهد (05/0p < /em><) و تأثیر معنی‏داری بر دیگر پارامترها نداشت (05/0p < /em>>).مطالعه حاضر مشخص کرد که مصرف آرژینین در سطوح 125 و 150 درصد، تحت شرایط چالش با آیمریا، جمعیت باکتری‏های پاتوژن را کاهش و جمعیت باکتری‏های سودمند و نیز سطح گلوتاتیون ‏پراکسیداز را افزایش داد.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of different levels of arginine on cecum microbial population and serum antioxidant properties of healthy and Eimeria-challenged broiler chicks

نویسندگان [English]

  • ّfatemeh Izadi 1
  • gh moghaddam 2
  • Ahmad Nematollahi 3
  • monireh khordad mehr 4
  • M. Abbasabadi 5
  • H. Ghanbarzadeh 6
1 PhD Student of Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
2 Professor of Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
3 Professor of Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
4 Associate Professor of Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
5 Master Student, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
6 PhD Student, Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
چکیده [English]

Introduction: Coccidiosis is known as one of the most common diseases of poultry in all over the world which characterized by enteritis. It annually causes economic losses in broiler chicks production industry. Genus Eimeria causes coccidiosis in broiler chickens. Insufficient ventilation and humidity, inappropriate stocking density, deficient immune responses, bacterial enteritis, and lack of efficient anticoccidial drugs facilitate development the coccidiosis. Coccidiosis also influence microflora and disturbs their population. Arginine participates in structure of some important biological and physiological molecules in birds. It increases pH and can influence population of bacteria. The present study was conducted to evaluate the effects of different levels of arginine on cecum microbial population and serum antioxidant properties of healthy and Eimeria-challenged broiler chicks.
Material and methods: A total number of 384 one-d-old broiler chick (Ross 308) of mixed sex with initial weight of 42±2 g was purchased from local hatchery. Broiler chicks fed diets supplemented with 85, 100, 125 and 150% of recommended digestible arginine. In 21 days, the half of broiler chicks was challenged with Eimeria spp and broiler chicks were divided into 8 groups with 6 replications and 8 birds/replicate. Experimental treatments included: Broiler chicks challenged with Eimeria and treated with 85% of recommended arginine (85-challenge group), broiler chicks challenged with Eimeria and treated with 100% of recommended arginine (100-challenge group, positive control), broiler chicks challenged with Eimeria and treated with 125% of recommended arginine (125-challenge group), broiler chicks challenged with Eimeria and treated with 150% of recommended arginine (150-challenge group). Healthy groups included: broiler chicks unchallenged with Eimeria and treated with 85% of recommended arginine (85-Healthy group), broiler chicks unchallenged with Eimeria and treated with 100% of recommended arginine (100-Healthy group, negative control), broiler chicks unchallenged with Eimeria and treated with 125% of recommended arginine (125-Healthy group) and broiler chicks unchallenged with Eimeria and treated with 150% of recommended arginine (150-Healthy group). In 21 and 42 days, 2 birds per replicate were killed by decollation. At 42 days of trial, blood samples were collected from 2 birds/replicate and gathered in tubes. The population of E. coli, Lactobasillus, total bacteria, bifidiobacteria and pH were assessed. Part of blood was used as whole blood for measurement of glutathione peroxidase (GPx), superoxide dismutase (SOD), nitric oxide (NO) malondialdehyde (MDA) and total antioxidant status (TAS). malondialdehyde (MDA) were measured by ZELLbio commercial kit (Germany). The levels of GPx (No:430430), SOD (439108), total antioxidant capacity (TAC: NX 2332) and (Randox Laboratories, Ardmore, Crumlin, UK) as recommended by producer Company. The study was conducted based on a completely randomized design in a 4×2 factorial arrangement with infection (challenged and unchallenged) and dietary supplemental of arginine (85, 100, 125 and 150% of the recommended levels).
Results and discussion: The results showed that challenge with Eimeria significantly decreased the levels of SOD, GPx and TAS but increased NO and MDA (P0.05). Dietary inclusion of 125 and 150% arginine could significantly increase GPx (p < /p>

کلیدواژه‌ها [English]

  • arginine
  • E. coli
  • Bifidobacteria
  • Coccidiosis
  • antioxidant status
  • Allen, P. (1997). Nitric oxide production during Eimeria tenella infections in chickens. Poultry Science, 76(6): 810-813.
  • Allen, P.C. and Fetterer, R.H. (2000). Effect of Eimeria acervulina infections on plasma L-arginine. Poultry Science, 79(10): 1414–1417.
  • Arak, H., Karimi Torshizi, M.A. and Rahimi, Sh. (2013). Study on the effect of Savory (Satureja khuzestanica) essential oil and Polysorb toxin-binder against experimental aflatoxicosis in Japanese quail. Veterinary Clinical Pathology, 7(27): 249-260. [In Persian]
  • Atakisi, O., Atakisi, E. and Kart, A. (2009). Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight and blood biochemical values in Japanese quails. Biological Trace Element Research, 132(1-3): 136-143.
  • Azad, M.A.K., Kikusato, T., Maekawa, H., Shirakawa, M. and Toyomizu, M. (2010). Metabolic characteristics and oxidative damage to skeletal muscle in broiler chickens exposed to chronic heat stress. Comparative Biochemistry and Physiology, 155(3): 401-406.
  • Boulton, K., Nolan, M. J., Harman, K., Psifidi, A., Wu, Z. and Bishop, S., (2017). Resistance and Tolerance are separabletraits in the innate immune response of chickens to Eimeria tenella induced coccidiosis. Veterinary Clinical Pathology, 44 (2): 28-35.
  • Bun, S.D., Guo, Y.M., Guo, F.C., Ji, F.J. and Cao, H. (2011). Influence of organic zinc supplementation on the antioxidant status and immune responses of broilers challenged with Eimeria tenella. Poultry Science, 90(6): 1220-1226.
  • Chandra, J., Samali, A. and Orrenius, S. (2000). Triggering and modulation of apoptosis by oxidative stress. Free Radical Biology and Medicine, 29(3-4): 323-333.
  • Craven, S.E. and Williams, D.D. (1998). In vitro attachment of Salmonella typhimurium to chicken cecal mucus: effect of cations andpretreatment with Lactobacillusspp. isolated from the intestinaltracts of chickens. Journal of Food Protection, 61(3): 265-271.
  • Dröge, W. (2002). Free radicals in the physiological control of cell function. Physiology Review, 82(1): 47-95.
  • Duan, X., Li, F., Mou, S., Feng, J., Liu, P. and Xu, L. (2015). Effects of dietary L-arginine on laying performance and anti-oxidant capacity of broiler breeder hens, eggs, and offspring during the late laying period. Poultry Science, 94(12): 2938-2943.
  • Giannenas, I., Papadopoulos, E., Tsalie, E., Triantafillou, E., Henikl, S., Teichmann, K. and Tontis, D. (2012). Assessment of dietary supplementation with probiotics on performance, intestinal morphology and microflora of chickens infected with Eimeria tenella. Veterinary Parasitology, 188(1-2): 31-40.
  • Graat, E.A., Ploeger, H.W., Henken, A.M., De Vries Reilingh, G., Noordhuzien, J.P. and Van Beek, P.N. (1996). Effect of initial litter contamination level with Eimeria acervulina on population dynamics and production characteristics in broilers. Veterinary Parasitolgy, 65(3-4): 223-232.
  • He, J., Hwang, G., Liu, Y., Gao, L., Kilpatrick-Liverman, L., Santarpia, P., et al. (2016). L-Arginine modifies the exopolysaccharide matrix and thwarts Streptococcus mutans outgrowth within mixed-species oral biofilms. Journal of Bacteriology, 198(19): 2651-2661.
  • Langrová, I., Chodová, D., Tůmová, T., Horáková, B., Krejčířová, R., Šašková, M., et al. (2019). Assessment of low doses of Eimeria tenella sporulated oocysts on the biochemical parameters and intestinal microflora of chickens. Turkish Journal of Veterinary and Animal Sciences, 43(1): 76-81.
  • Liopis, M., Antolin, M., Guarner, F., Salas, A. and Malagelada, J.R. (2005). Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitronbenzene sulphonic acid. Gut, 54(7): 955-959.
  • Ma, X.Y.Y.C., Lin, Z.Y., Jiang, C.T., Zheng, G.L., Zhou, D.Q., Yu, T., et al. (2010). Dietary arginine supplementation enhances anti-oxidative capacity and improves meat quality of finishing pigs. Amino Acids, 38(1): 95-102.
  • Mahdavi, S. and Nobakht, A. (2018). Evaluation of the effect of Thyme (Thymus vulgaris L.) and Ziziphora (Ziziphora tenuior L.) essential oils on intestinal microflora of broilers. Veterinary Clinical Pathology, 11(44): 305-312. [In Persian]
  • Milinkovik-Thur, S., Stogective, Z., Prisljin, J., Zdelar-Tuk, M., Poljicak-Milas, N., Ljubic, B.B., et al. (2007). Effect of refeeding on the antioxidant system in cockerels and pullets. Acta Veterinaria Hungarica, 55(2): 181-188.
  • Montagne, L., Pluske, J.R. and Hampson, D.J. (2003). A review of interactions between dietary fiber and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Animal Feed Science and Technology, 108(1-4): 95-117.
  • Mookiah, S., Sieo, C.C., Ramasamy, K., Abdullah, N. and Ho, Y.W. (2014). Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. Journal of Science Food Agriculture,94(2): 341-348.
  • Olfati, A., Mojtahedin, A., Sadeghi, T. Akbari, M. and Martínez-Pastor, F. (2018). Comparison of growth performance and immune responses of broiler chicks reared under heat stress, cold stress and thermoneutral conditions. Spanish Journal of Agriculture Research, 16(2): 1-7.
  • Perez, P.F., Minnaard, J., Rouvet, M., Knabenhans, C., Brassart, D., De Antoni, G.L., et al. (2001). Inhibition of Giardia intestinalis by extracellular factors from lactobacilli: an in vitro study. Applied Environment Microbiology, 67(11): 5037-5042.
  • Qin, Z.R., Fukata, T., Baba, E. and Arakawa, A. (1995). Effect of Eimeria tenella infection on Salmonella enteritidis infection in chickens. Poultry Science, 74(1): 1-7.
  • Rasoulifard, M.H. and Zargari, F. (2015). The effects of aqueous extract of white tea on serum antioxidant enzymes in rats exposed to arsenic. Veterinary Clinical Pathology, 9(34): 153-178. [In Persian]
  • Ren, W., Chen, S., Yin, J., Duan, J., Li, T., Liu, G., et al. (2014). Dietary arginine supplementation of mice alters the microbial population and activates intestinal innate immunity. The Journal of Nutrition, 144(6): 988-995.
  • Ren, W., Zou, L., Li, N., Wang, Y., Liu, G., Peng, Y., et al. (2013). Dietary arginine supplementation enhances immune responses to inactivated Pasteurella multocida vaccination in mice. British Journal of Nutrition, 109(5): 867-72.
  • Sergeant, M.J., Constantinidou, C., Cogan, T.A., Bedford, M.R., Penn, C.W. and Pallen, M.J. (2014). Extensive Microbial and Functional Diversity within the Chicken Cecal Microbiome, Plos One, 9(3): 18-21.
  • Tierney, J., Gowing, H., Van Sinderen, D., Flynn, S., Stanley, L., McHardy, N., et al. (2004). In vitro inhibition of Eimeria tenella invasion by indigenous chicken Lactobacillus species. Veterinary Parasitology, 122(3): 171-182.
  • Williams, R.B. (1999). A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. International Journal of Parasitology, 29(8): 1209-1229.
  • Wu, G. and Meininger, C.J. (2000). Arginine nutrition and cardiovascular function. Journal of Nutrition, 130(11): 2626-2629.
    • Wu, Z.G., Hu, T.J., Rothwell, L., Vervelde, L., Kaiser, P., Boulton, K., et al. (2016). Analysis of the function of IL-10 in chickens using specific neutralising antibodies and a sensitive capture ELISA. Developmental and Comparative Immunology, 63(1): 206-212.