ارزیابی پتانسیل پروبیوتیکی سویه‌های بومی لاکتوباسیلوس بر ریخت‌شناسی روده بلدرچین ژاپنی در طول دوره پرورش

نوع مقاله: علمی پژوهشی

نویسندگان

1 گروه علوم دامی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران

2 گروه علوم دامی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران

3 گروه بیوتکنولوژی میکروبی، موسسه تحقیقات بیوتکنولوژی کشاورزی ایران (ABRII)، تحقیقات کشاورزی، سازمان آموزش و ترویج (AREEO)، کرج، ایران

4 گروه دامپزشکی، دانشگاه آزاد اسلامی واحد شبستر، شبستر، ایران

چکیده

به­دلیل اثرات مضر مصرف آنتی­بیوتیک­ها بر سلامت گله­های طیور و متعاقب آن به­مخاطره افتادن سلامت جوامع بشری، تلاش برای استفاده از مواد جایگزین به­جای آنتی­بیوتیک­هاافزایش یافته است. از جمله مناسب­ترین موادی که جهت جایگزینی مورد بحث واقع شده­اند، پروبیوتیک­ها می­باشند. هدف از این آزمایش، ارزیابی غلظت‌های مختلف چهار سویه بومی پروبیوتیک بر ریخت‌شناسی روده بلدرچین ژاپنی بود. این آزمایش در قالب یک طرح کاملاً تصادفی روی 560 قطعه بلدرچین ژاپنی یک­روزه با 7 تیمار‌، 4 تکرار و 20 قطعه بلدرچین به ازای هر واحد آزمایش در طول مدت 5 هفته انجام شد. تیمارها شامل گروهشاهد‌، تیمار حاوی پروبیوتیک تجاری پری‌مالاک (تیمار 2)، تیمار‌ حاوی پروبیوتیک تجاری پروتکسین (تیمار 3)، تیمارهای 4، 5، 6 و 7 که به­ترتیب حاوی ترکیب چهار سویه بومی در سطوح 50، 100، 150 و 200 گرم به­ازای هر تن جیره بودند. بیش‌ترین ارتفاع پرزها در دئودنوم بلدرچین­های مربوط به تیمار حاوی 150 گرم پروبیوتیک بومی در تن جیره بود و هم‌چنین بیش‌ترین ارتفاع پرزها در ژوژنوم و ایلئوم به­ترتیب مربوط به تیمارهای حاوی 50 و 150 گرم پروبیوتیک بومی در تن جیره بود. بیش‌ترین و کم‌ترین نسبت طول پرز به عمق کریپت در دئودنوم و ایلئوم به ترتیب مربوط به تیمارهای حاوی 150 گرم پروبیوتیک بومی در تن جیره و گروه شاهد بود. بیش‌ترین و کم‌ترین نسبت طول پرز به عمق کریپت در ژوژنوم هم به­ترتیب در تیمارهای حاوی پروبیوتیک‌های بومی در سطوح ‌50 و 150‌ گرم به ازای هر تن جیره و گروه شاهد مشاهده شد. بر اساس یافته­های این مطالعه می‌توان نتیجه گرفت که سویه‌های بومی لاکتوباسیلوس در سطح 150 گرم در هر تن خوراک موجب افزایش ارتفاع پرزها و نسبت طول پرز به عمق کریپت‌ها و بهبود عملکرد تولید می‌شوند، به‌طوری که مخلوط سویه‌های بومی لاکتوباسیلوس دارای پتانسیل پروبیوتیکی در بلدرچین ژاپنی می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Probiotic Potential of Some Native Lactobacillus Strains on Intestinal Morphology of Japanese Quails during the Rearing Period

نویسندگان [English]

  • Seyed Alireza Siadati 1
  • Yahya Ebrahimnezhad 2
  • Gholamreza Salehi Jouzani 3
  • Jalal Shayegh 4
1 Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran
2 Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran.
3 Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
4 Veterinary Medicine College, Shabestar Branch, Islamic Azad University, Shabestar, Iran
چکیده [English]

Due to the harmful effects of antibiotic use on the health of poultry flocks and the consequent health of human societies,  attempts to use alternative substances have increased. Probiotics are one of the most well-known alternative substances to be used. The objective of the present study was to evaluatethe probiotic effects of different concentrations of four selected native Lactobacillus strains on intestinal morphology offemale Japanese quails.To do this, the farm trial was performed in the format of complete randomized design through 4 replicates of 7 different probiotic treatments, with each replicate consisting of 20 quails, resulting in a total of 560 quails, for five weeks. Treatments were as follows: T1: control (basal diet)‌; T2: Primalac; T3: Protexin; and T4, T5, T6, and T7: four native strains in levels of 50, 100, 150, and 200 g/ton of diet respectively.  The greatest villus height in the duodenum was related to treatment with native probiotic of 150 g/ton and the greatest villus height in jejunum and ileum was related to treatment with native probiotic of 50 g/ton and 150 g/ton respectively. The greatest and lowest villus height to the crypt depth ratio in the duodenum and ileum was found in the diet with native probiotic of 150 g/ton and control treatment respectively. The greatest and lowest villus height to the crypt depth ratio in the jejunum was found in the diets with native probiotics (50 g/ton‌ and 150 g/ton) and control treatment, respectively‌. Finally, it can be concluded that the use of the native Lactobacillus strains (150 ‌g/ton diet) enhanced the villus height and villus height to the crypt depth ratio of Japanese quails.

کلیدواژه‌ها [English]

  • Lactobacillus
  • Japanes quail
  • Intestine morphology

 

  • Aazami, N., Salehi Jouzani, G., Khodaei, Z., Meimandipour, A., Safari, M. and Goudarzvand, M. (2014). Characterization of some potentially probiotic Lactobacillus strains isolated from Iranian native chickens. The Journal of General and Applied Microbiology, 60(6): 215-221.
  • Afsharmanesh, M., Sadaghi, B. and Silversides, F. (2013). Influence of supplementation of prebiotic, probiotic, and antibiotic to wet-fed wheat-based diets on growth, ileal nutrient digestibility, blood parameters, and gastrointestinal characteristics of broiler chickens. Comparative Clinical Pathology, 22(2): 245-251.
  • Alkhalf, A., Alhaj, M. and Al-Homidan, I. (2010). Influence of probiotic supplementation on blood parameters and growth performance in broiler chickens. Saudi Journal of Biological Sciences, 17(3): 219-225.
  • Angel, R. and Powers, W. (2006). Broiler Production and the environment. Bulletin No. EB368. College of Agriculture and Natural Resources, University of Maryland, Baltimore.
  • Applegate, T., Dibner, J., Kitchell, M., Uni, Z. and Lilburn, M. (1999). Effect of turkey (Meleagridis gallopavo) breeder hen age and egg size on poult development. 2. Intestinal villus growth, enterocyte migration and proliferation of the turkey poult. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 124(4): 381-389.
  • Awad, W., Ghareeb, K. and  Böhm, J. (2010). Effect of addition of a probiotic micro‐organism to broiler diet on intestinal mucosal architecture and electrophysiological parameters. Journal of Animal Physiology and Animal Nutrition, 94(4): 486-494.
  • Bai, S.P., Wu, A.M., Ding, X.M., Lei, Y., Bai, J., Zhang, K.Y., et al. (2013). Effects of probiotic-supplemented diets on growth performance and intestinal immune characteristics of broiler chickens. Poultry Science, 92(3): 663-670.
  • Batal, A.B. and Parsons, C.M. (2003). Utilization of different soy products as affected by age in chicks. Poultry Science, 82 (3): 454-462.
  • Chiang, G., Lu, W., Piao, X., Hu, J., Gong, L. and Thacker, P. (2010). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Australasian Journal of Animal Sciences, 23(2)‌: 263-271.
  • Chichlowski, M., Croom, W., Edens, F., McBride, B., Qiu, R., Chiang, C., et al. (2007). Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, PrimaLac, and salinomycin. Poultry Science, 86(6): 1121-1132.
  • Chimote, M., Barmase, B., Raut, A., Dhok, A. and Kuralkar, S. (2009). Effect of supplementation of probiotic and enzymes on performance of Japanese quails. Veterinary World, 2(6): 219-220.
  • Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics, 11: 1-42.
  • Feng, J., Liu, X., Xu, Z., Liu, Y. and  Lu, Y. (2007). Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Animal Feed Science and Technology, 134(3): 235-242.
  • Fernandes, B., Martins, M., Mendes, A., Milbradt, E., Sanfelice, C., Martins, B., et al. (2014). Intestinal integrity and performance of broiler chickens fed a probiotic, a prebiotic, or an organic acid. Revista Brasileira de Ciência Avícola, 16(4): 417-424.
  • Fuller, R. (1989). Areview: Probiotics in man and animals. Journal of Applied Bacteriology, 66(5): 365-378.
  • Garcia, V., Catala-Gregori, P., Hernandez, F., Megias, M. and Madrid, J. (2007). Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. The Journal of Applied Poultry Research, 16(4): 555-562.
  • Giannenas, I., Tsalie, E., Triantafillou, E., Hessenberger, S., Teichmann, K., Mohnl, M., et al. (2014). Assessment of probiotics supplementation via feed or water on the growth performance, intestinal morphology and microflora of chickens after experimental infection with Eimeria acervulina, Eimeria maxima and Eimeria tenella. Avian Pathology, 43(3): 209-216.
  • Gunal, M., Yayli, G., Kaya, O., Karahan, N. and Sulak, O. (2006). The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. International Journal of Poultry Science, 5(2): 149-155.
  • Kermanshahi, H., Daneshmand, A., Emami, N.K., Tabari, D.G., Doosti, M., Javadmanesh, A.,  et al. (2015). Effect of in ovo injection of threonine on Mucin2 gene expression and digestive enzyme activity in Japanese quail (Coturnix japonica). Revista Brasileira de Ciência Avícola, 100(1): 257-262.
  • Khaksar, V., Krimpen, M.V., Hashemipour, H. and Pilevar, M. (2012). Effects of thyme essential oil on performance, some blood parameters and ileal microflora of Japanese quail. The Journal of Poultry Science, 49(2): 106-110.
  • Ledezma-Torres, R., Posadas-Cantu, A., Espinosa-Leija, R., Hernandez-Escareno, J., Fimbres-Durazo, H., et al. (2015). Effect of adding different levels of probiotics to broilers diets on gastrointestinal tract development and production performance. African Journal of Microbiology Research, 9(12): 892-897.
  • Maiorka, A., Dahlke, F. and Morgulis, M.S. (2006). Broiler adaptation to post-hatching period. Ciência Rural, 36(2): 701-708.
  • Maiorka, A., Santin, E., Dahlke, F., Boleli, I., Furlan, R. and Macari, M. (2003). Posthatching water and feed deprivation affect the gastrointestinal tract and intestinal mucosa development of broiler chicks. Journal of Applied Poultry Research, 12(4): 483-492.
  • Mountzouris, K., Tsitrsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G., et al. (2010). Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Science, 89(1): 58-67.
  • Naji, S., Al-Gharawi, J. and Al-Zamili, I. (2015). The effect of starting age of feeding wetting fermented feed on the intestinal flora, humoral and cellular immunity of broiler chicks. International Journal of Advanced Research, 3(1): 41-49.
  • NRC. (1994). Nutrient requirements of poultry. National Research Council. National Academy Press Washington^ eUSA USA.
  • Pelicano, E.R.L., Souza, P., Souza, H., Oba, A., Norkus, E.A., Kodawara, L.M., et al. (2003). Morfometria e ultra-estrutura da mucosa intestinal de frangos de corte alimentados com dietas contendo diferentes probióticos. Revista Portuguesa de Ciências Veterinárias, 98(547): 125-134.
  • Pelícia, K., Mendes, A., Saldanha, E., Pizzolante, C., Takahashi, S., Moreira, J., et al. (2004). Use of prebiotics and probiotics of bacterial and yeast origin for free-range broiler chickens. Revista Brasileira de Ciência Avícola, 6(3): 163-169.
  • Pluske, J.R., Hampson, D.J. and Williams, I.H. (1997).  Factors influencing the structure and function of the small intestine in the weaned pig: a review. Livestock Production Science, 51(1): 215-236.
  • Salzman, N.H. (2011). Microbiota–immune system interaction: an uneasy alliance. Current Opinion in Microbiology, 14(1): 99-105.
  • Samanya, M.  and Yamauchi, K.E. (2002). Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(1): 95-104.
  • Samli, H.E., Senkoylu, N., Koc, F., Kanter, M. and Agma, A. (2007). Effects of Enterococcus faecium and dried whey on broiler performance, gut histomorphology and intestinal microbiota. Archives of Animal Nutrition, 61‌(1): 42-49.
  • Sas, S. and Guide, S.U.S. (2003).  Version 9.1. SAS Institute Inc., Cary, NC.
  • Schwarz, S., Kehrenberg, C. and Walsh, T. (2001). Use of antimicrobial agents in veterinary medicine and food animal production. International Journal of Antimicrobial Agents, 17(6): 431-437.
  • Sen, S., Ingale, S., Kim, Y., Kim, J., Kim, K., Lohakare, J., et al. (2012). Effect of supplementation of Bacillus subtilis LS 1-2 to broiler diets on growth performance, nutrient retention, caecal microbiology and small intestinal morphology. Research in Veterinary Science, 93‌(1): 264-268.
  • Shams Shargh, M., Dastar, B., Zerehdaran, S., Khomeiri, M. and Moradi, A. (2012). Effects of using plant extracts and a probiotic on performance, intestinal morphology, and microflora population in broilers. Journal of Applied Poultry Research, 21(2): 201-208.
  • Smirnov, A., Perez, R., Amit-Romach, E., Sklan, D. and Uni, Z. (2005). Mucin dynamics and microbial populations in chicken small intestine are changed by dietary probiotic and antibiotic growth promoter supplementation. The Journal of Nutrition, 135(2): 187-192.
  • Sri-Harimurti, H.M. (2013). The dynamics of indigenous lactic acid bacteria probiotics on carcass yield, abdominal fat and intestinal morphology of broilers. Proceeding of the 3rd AINI international seminar, Padang, West Sumatera, Indonesia,  24-26.
  • Tarachai, P. and Yamauchi, K. (2000). Effects of luminal nutrient absorption, intraluminal physical stimulation, and intravenous parenteral alimentation on the recovery responses of duodenal villus morphology following feed withdrawal in chickens. Poultry Science, 79(11): 1578-1585.
  • Vandeplas, S., Dauphin, R.D., Thiry, C., Beckers, Y., Welling, G.W., Thonart, P., et al. (2009). Efficiency of a Lactobacillus plantarum-xylanase combination on growth performances, microflora populations, and nutrient digestibilities of broilers infected with Salmonella Typhimurium. Poultry Science, 88(8): 1643-1654.
  • Viveros, A., Chamorro, S., Pizarro, M., Arija, I., Centeno, C. and Brenes, A. (2011). Effects of dietary polyphenol-rich grape products on intestinal microflora and gut morphology in broiler chicks. Poultry Science, 90(3): 566-578.
  • Xu, Z., Hu, C., Xia, M., Zhan, X. and Wang, M. (2003). Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Science, 82(6): 1030-1036.
  • Zhang, A., Lee, B., Lee, S., Lee, K., An, G., Song, K., et al. (2005). Effects of yeast (Saccharomyces cerevisiae) cell components on growth performance, meat quality, and ileal mucosa development of broiler chicks. Poultry Science, 84(7): 1015-1021.